

Report No.: GNB191120234EN Date: 2019-12-05

Page 1 of 10

Applicant Mid Ocean Brands B.V. / Vendor code: 109979

Address 7/F, Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon,

HongKong

USB HUB &SPINNER Sample Name

Tested Model MO9318 Sample Receiving date 2019-11-20

Test period 2019-11-20 - 2019-11-27

Test Requirement The Restriction of the Use of Certain Hazardous Substances in Electrical

and Electronic Equipment, RoHS Directive 2011/65/EU and its amendment

Directive (EU) 2015/863.

Test Method Please refer to next page(s). Test result Please refer to next page(s).

Conclusion Based on the verification results of the submitted sample(s), the results

> of Lead(Pb), Cadmium(Cd), Mercury(Hg), Hexavalent Chromium(CrVI), Polybrominated biphenyls(PBBs), Polybrominated diphenyl ethers(PBDEs),

Dibutyl phthalate(DBP), Butyl benzyl phthalate(BBP), Di-2-ethylhexyl phthalate(DEHP) and Di-iso-butyl phthalate(DIBP) content in the tested part(s) comply with the requirements as set by RoHS Directive 2011/65/EU

and its amendment Directive (EU) 2015/863.

Note The test results are related only to the tested items.

Authorized signature

Lab Manager: Gavin Zhou

2019-12-05

Report No.: GNB191120234EN Date: 2019-12-05 Page 2 of 10

A. Pb, Cd, Cr(VI), Hg, PBBs&PBDEs

Test Method:

- 1. Disassembly, disjointment and mechanical sample preparation
 - -Ref. to IEC 62321-2:2013, Disassembly, disjointment and mechanical sample preparation.
- 2. With reference to IEC 62321-1:2013, tests were performed for the samples indicated by the photos in this report.
- (1) Screening Lead, mercury, cadmium, total chromium and total bromine
 - Ref. to IEC 62321-3-1:2013, Screening for Lead, mercury, cadmium, total chromium and total bromine by X-ray fluorescence spectrometry.
- (2) Wet chemical test method
 - a. Total Lead, Cadmium, Chromium and Mercury content
 - —Ref. to IEC 62321-4:2013+A1:2017, determination of Mercury in polymers, metals and electronics by ICP-OES.
 - —Ref. to IEC 62321-5:2013, determination of Cadmium, lead and chromium in polymers and electronics and cadmium and lead in metals by ICP-OES.
 - b. Chromium (VI) content
 - —For Colourless and coloured corrosion-protected coatings on metals, Ref. to IEC 62321-7-1:2015, determination of presence of hexavalent chromium (Cr(VI)) in colourless and coloured corrosion-protected coatings on metals by the colorimetric method.
 - For polymers and electronics, Ref. to IEC 62321-7-2:2017, determination of hexavalent chromium (Cr(VI)) in polymers and electronics by the colorimetric method.
 - c. PBBs, PBDEs
 - Ref. to IEC 62321-6:2015, determination of polybrominated biphenyls and polybrominated diphenyl ethers in polymers by gas chromatograhy -mass spectrometry (GC-MS).

Report No.: GNB191120234EN Date: 2019-12-05

Page 3 of 10

Test result(s):

Part No.	Part Description	Results of EDXRF				Chemical confirmation	Conclusion	
T att No.	T art Description	Pb	Cd	Hg	Cr	Br	results (mg/kg)	Corrolation
1	Black plastic	BL	BL	BL	BL	BL		Pass
2	Black plastic	BL	BL	BL	BL	BL		Pass
3	Slivery metal (steel ring)	BL	BL	BL	IN		Cr(VI): Negative	Pass
4	Silvery metal (steel ball)	BL	BL	BL	IN		Cr(VI): Negative	Pass
5	Brown plastic	BL	BL	BL	BL	BL		Pass
6	SMD resistor	BL	BL	BL	BL	BL		Pass
7	SMD capacitor	BL	BL	BL	BL	BL		Pass
8	SMD chip (IC)	BL	BL	BL	BL	BL		Pass
9	Soldering tin (SMD)	189 (BL)	BL	BL	BL		7	Pass
10	Soldering tin (wiring)	239 (BL)	BL	BL	BL	<u></u>		Pass
11-1	Silvery metal	BL	BL	BL	BL			Pass
11-2	Black plastic support	BL	BL	BL	BL	BL		Pass
11-3	Metal (pins)	BL	BL	BL	BL			Pass
12-1	Silvery metal (USB)	BL	BL	BL	BL			Pass
12-2	White plastic support	BL	BL	BL	BL	BL		Pass
12-3	Metal (pins)	BL	BL	BL	BL	-40		Pass
13	PCB board	BL	BL	BL	BL	IN	PBBs: N.D. PBDEs: N.D.	Pass
14	PCB board	BL	BL	BL	BL	IN	PBBs: N.D. PBDEs: N.D.	Pass
15	Black wire sheath	BL	BL	BL	BL	BL		Pass
16	Copper wire	BL	BL	BL	BL			Pass
17	White wire sheath	BL	BL	BL	BL	BL		Pass
18	Blue wire sheath	BL	BL	BL	BL	BL		Pass
19	Red wire sheath	BL	BL	BL	BL	BL		Pass
20	White plastic	BL	BL	BL	BL	BL		Pass
21	Metal (pins)	BL	BL	BL	BL			Pass
22	Soldering tin (wiring)	162 (BL)	BL	BL	BL			Pass
23	White plastic	BL	BL	BL	BL	BL		Pass

Report No.: GNB191120234EN Date: 2019-12-05 Page 4 of 10

Part No.	Part Description	Results of EDXRF				Chemical confirmation	Conclusion	
		Pb	Cd	Hg	Cr	Br	results (mg/kg)	Conclusion
24	Black plastic casing	BL	BL	BL	BL	BL		Pass
25	Silvery metal	BL	BL	BL	BL			Pass
26	Black plastic	BL	BL	BL	BL	BL		Pass
27	Soldering tin (wiring)	198 (BL)	BL	BL	BL			Pass
28	White wire sheath	BL	BL	BL	BL	BL		Pass
29	White wire sheath	BL	BL	BL	BL	BL		Pass
30	Blue wire sheath	BL	BL	BL	BL	BL		Pass
31	Silvery coating	BL	BL	BL	BL	BL		Pass
32	Blue plastic (substrate)(shell)	BL	BL	BL	BL	IN	PBBs: N.D. PBDEs: N.D.	Pass
33	White plastic	BL	BL	BL	BL	IN	PBBs: N.D. PBDEs: N.D.	Pass

ORIGINAL

Report No.: GNB191120234EN Date: 2019-12-05 Page 5 of 10

Remark:

- (^1) "---" = Not Applicable;
- (^2) (a) It is the result on total Br while test item on restricted substances is PBBs/PBDEs. It is the result on total Cr while test item on restricted substances is Cr(VI).
 - (b) The XRF screening test for RoHS elements-The reading may be different to the actual content in the sample be of non-uniformity composition.
 - (c) Results are obtained by EDXRF for primary screening, and further chemical testing by ICP-OES (for Pb, Cd, Hg), UV-VIS (for Cr(VI)) and GC/MSD (for PBBs, PBDEs) is recommended to be performed, if the concentration exceeds the below warming value according to IEC 62321-3-1: 2013.

Attached table 1, XRF screening limits in mg/kg for regulated elements in various matrices:

Element	Polymer Materials	Metallic Materials	Electronics
Cd	BL≤(70-3σ)< X	BL≤(70-3σ)< X	LOD< X
	< (130+3σ) ≤OL	< (130+3σ) ≤OL	< (250+3σ) ≤OL
Pb	BL≤(700-3σ)< X	BL≤(700-3σ)< X	BL≤(500-3σ)< X
	< (1300+3σ) ≤OL	< (1300+3σ) ≤OL	< (1500+3σ) ≤OL
Hg	BL≤(700-3σ)< X	BL≤(700-3σ)< X	BL≤(500-3σ)< X
	< (1300+3σ) ≤OL	< (1300+3σ) ≤OL	< (1500+3σ) ≤OL
Br	BL≤(300-3σ)< X	N.A.	BL≤(250-3σ)< X
Cr	BL≤(700-3σ)< X	BL≤(700-3σ)< X	BL≤(500-3σ)< X

Note: ① BL "below limit" = the result less than the limit.

- ② OL "over limit" = the result greater than the limit.
- ③ IN = inconclusive, the region where need further chemical testing by ICP-OES (for Pb, Cd, Hg), UV-VIS (for Cr(VI)) and GC/MSD (for PBBs, PBDEs).
- 4 3σ = Repeability of the analyser at the action level.
- 5 LOD = Limit of detection.

 $(^3)$ (a) mg/kg = ppm = 0.0001%;

(b) N.D. = Not detected (lower than RL);

(c) Reporting Limit (RL) and Limit of Directive 2011/65/EU.

Parameter	Unit	Limit	Reporting Limit (RL)	
Lead (Pb)	mg/kg	1000	10	
Cadmium (Cd)	mg/kg	100	10	
Mercury (Hg)	mg/kg	1000	10	
Chromium VI (Cr VI)	mg/kg	1000	R1	
Group PBBs	mg/kg	1000	R2	
Group PBDEs	mg/kg	1000	R2	

R1: Cr(VI) for metal sample, the reporting limit (RL) = Method Detection Limit (MDL) = 0.10 ug/cm². The reporting limit (RL) of Cr(VI) for polymers and electronics is 10mg/kg.

R2: The reporting limit (RL) for single compound of PBBs & PBDEs is 50mg/kg.

Report No.: GNB191120234EN Date: 2019-12-05 Page 6 of 10

(d) According to IEC 62321-7-1:2015, result on Cr(VI) for metal sample is shown as Negative, Inconclusive or Positive: Negative = Absence of Cr(VI), Inconclusive = Maybe exist Cr(VI), Positive = Presence of Cr(VI).

Colorimetric result (Cr(VI) concentration)	Qualitative result			
The sample solution is < the 0.10	The sample is negative for Cr(VI)_The Cr(VI) concentration is			
ug/cm ² equivalent comparison	below the limit of quantification. The coating is considered a			
standard solution	non-Cr(VI) based coating.			
The sample solution is ≥ the 0.10	The result is considered to be inconclusive – Unavoidable			
ug/cm² and ≤ the 0.13 ug/cm²	coating variations may influence the determination.			
equivalent comparison standard	Recommendation: if addition samples are available, perform a			
solutions	total of 3 trials to increase sampling surface area. Use the			
	averaged result of the 3 trials for the final determination.			
The sample solution is > the 0.13	The sample is positive for Cr(VI)_The Cr(VI) concentration is			
ug/cm ² equivalent comparison	above the limit of quantification and the statistical margin of			
standard solution	error. The sample coating is considered to contain Cr(VI).			

ORIGINAL

Report No.: GNB191120234EN Date: 2019-12-05 Page 7 of 10

B. Phthalates—DBP, BBP, DEHP & DIBP

Test Method: Ref. to IEC 62321-8: 2017

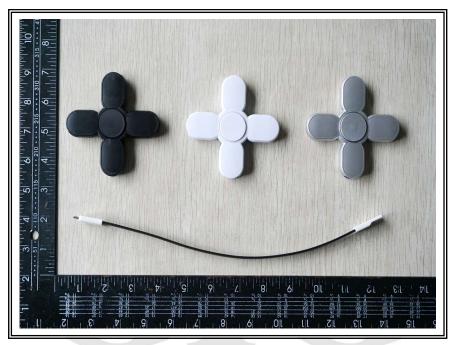
Determination of Phthalates in polymers by Gas Chromatography-Mass Spectrometry

(GC-MS)

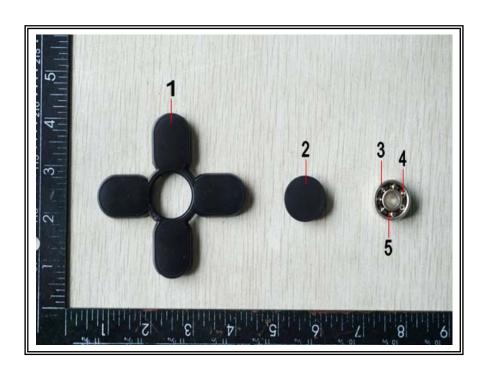
Test result:

Test item	DBP	BBP	DEHP	DIBP
Maximum Permissible Limit (mg/kg)	1000	1000	1000	1000

Dowt No.		Canalusian			
Part No.	DBP	ВВР	DEHP	DIBP	Conclusion
1+2	N.D.	N.D.	N.D.	N.D.	Pass
5	N.D.	N.D.	N.D.	N.D.	Pass
11-2+12-2	N.D.	N.D.	N.D.	N.D.	Pass
13+14	N.D.	N.D.	N.D.	N.D.	Pass
15+17	N.D.	N.D.	N.D.	N.D.	Pass
18+19	N.D.	N.D.	N.D.	N.D.	Pass
20+23+26	N.D.	N.D.	N.D.	N.D.	Pass
24	N.D.	N.D.	N.D.	110	Pass
28+29+30	N.D.	N.D.	N.D.	N.D.	Pass
31	N.D.	N.D.	N.D.	N.D.	Pass
32+33	N.D.	N.D.	N.D.	N.D.	Pass

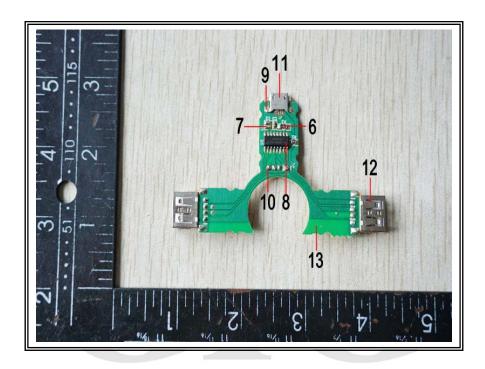

Remark: 1. Reporting Limit (RL) for DBP, BBP, DEHP, DIBP = 50mg/kg.

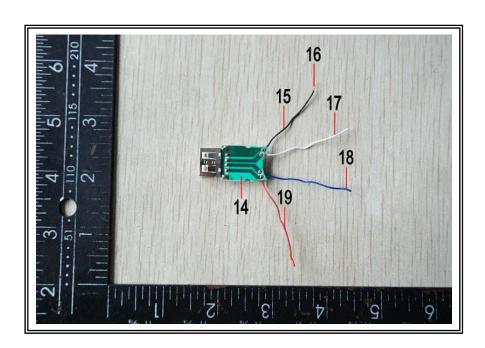
2. N.D. = Not Detected (<RL).

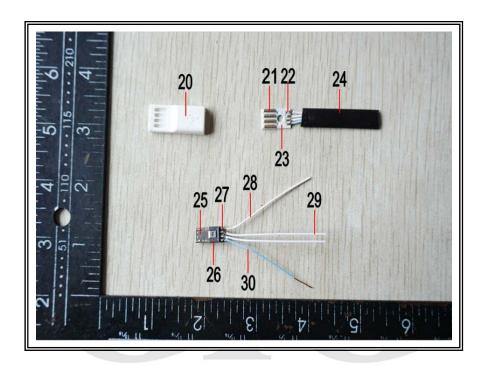


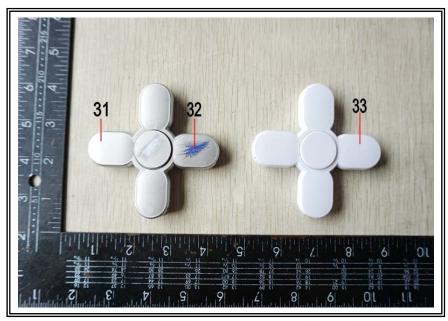
Report No.: GNB191120234EN Date: 2019-12-05 Page 8 of 10

Sample photo(s):




Test item: USB HUB & SPINNER
Tested Model No.: MO9318


Report No.: GNB191120234EN Date: 2019-12-05 Page 9 of 10



Report No.: GNB191120234EN Date: 2019-12-05 Page 10 of 10

GIG authenticate the photo(s) on original report only

****End of Report****