

Report No.: AGC03778181201-005S1

Date: Dec.21, 2018

Page 1 of 10

Applicant: MID OCEAN BRANDS B.V

7/F, Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon, Hong Kong

Report on the submitted samples said to be:

Sample Name	:	See Sample Information
Model	:	See Sample Information
Manufacturers	:	101191
Sample Receiving Date	15%	Dec.03, 2018
Testing Period	Atto	Dec.03, 2018 to Dec.18, 2018

Test Method

Address:

Please refer to next page(s).

Test Result

Thease refer to next page(s)

: Please refer to next page(s).

Test Requested

1.ISO 12312-1:2013+A1:2015, excluding:

- Clause 12 Information and labeling

Conclusion

Pass

Jay Approved by Liujinliang, Jay.Liu Laboratory Supervisor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed a http://www.agc-cent.com.

Attestation of Global Compliance Std. & Tech.

Test Report

Date: Dec.21, 2018

Report No.: AGC03778181201-005S1

1.Tests Conducted Summary: (1) Requirements for Sunglasses

Test standard: - ISO 12312-1:2013+A1:2015

- ISO 12311:2013

Eye and face protection — Sunglasses and related eyewear — Part 1: Sunglasses for general use Personal protective equipment — Test methods for Sunglasses and related eyewear

Page 2 of 1

Note: The applicant's attention was drawn that the manufacturer should not use the frame materials which are known to cause irritation, allergic or toxic reaction during wear in a normal state of health against significant proportion of users.

CLAUSES	R	EQUIREMENTS	RESULT				
4 Construction	on and materials	the the state of t	Filestation of Golde				
4.1	Construction	onstruction					
4.2	Filter material and surface qualit	hy in the second s	Р				
4.3	Physiological compatibility (Nic	kel Release)	NA				
5 Transmitta	nce	A Constant	a.C.				
5.2	Transmittance and filter	Filter categories	Cat.3				
Amesonon C	categories	UV requirements	P				
5.3 General tra	ansmittance requirements	The State of the S	Estation of GOL				
5.3.1	Uniformity of luminous transmit	Uniformity of luminous transmittance					
® Thestalion of O	C American C	5.3.2.2 Spectral transmittance	Р				
5.3.2	Requirements for road use and driving	5.3.2.3 Detection of signal lights	P				
	dirving	5.3.2.4 Driving in twilight or at night	NA				
5.3.3	Wide angle scattering	GC The GC The A	Р				
	Additional transmittance	5.3.4.1 Photochromic filters	NA				
5.3.4	requirements for specific filter	5.3.4.2 Polarizing filters	NA				
types		5.3.4.3 Gradient filters	NA				
6 Refractive	power						
6.1	Spherical and astigmatic power	Spherical and astigmatic power					
6.2	Local variations in refractive por	wer	P P				
6.3	Prism imbalance (relative prism	error)	Р				

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ASC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.

No.18 C

Attestation of Global Compliance Std. & Tech.

Report No.: AGC03778181201-005S1

Date: Dec.21, 2018

Page 3 of 10

CLAUSES	REQUIREMENTS	RESULT
7 Robustr	iess in the second s	A The Constant
7.1	Minimum robustness of filters	Р
7.2	Frame deformation and retention of filters	P
8	Resistance to solar radiation	PC PC
9	Resistance to ignition	Р
11 Protec	tive requirements	The
11.1	Coverage area	P C
12 Inform	nation and labeling	GO LA
12.1	Information to be supplied with each pair of sunglasses	NR
12.2	Additional information	NR

Remark: P=Pass; F=Fail; NA=Not Applicable; NR=Not Require; X=Checked; Cat.=Category;

Test Results

Construction—Clause 4.1 and Filter material and surface quality —Clause 4.2

G		S		The manage	8 5 Ind Goba Con			
	Sample Number	Construction		Filter material an	d surface quality	Comment	Result	
ST.	A march ()	Observed	Absent	Observed	Absent			
Clos	100	2	Х		X	······································	Р	

Requirements:

1. Construction shall be smooth and without sharp projections;

2. Filter material and surface quality: Except in a marginal area 5 mm wide, sunglass filters shall have no material or machining defects within an area of 30mm diameter around the reference point that may impair vision, e.g. bubbles, scratches, inclusions, dull spots, pitting, mould marks, notches, reinforced points, specks, beads, water specks, pocking, gas inclusions, splintering, cracks, polishing defects or undulations.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ASC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.

Attestation of Global Compliance Std. & Tech.

Report No.: AGC03778181201-005S1

Date: Dec.21, 2018

Page 4 of 10

Transmittance and filter categories —Clause 5.2

Sample No.: 1				The Compliance
Test Items	Requirements	Left	Right	Result(s)
The companie	For Cat. 0: 80.0~100	on of Carl	in the second	N
Luminous	For Cat. 1: 43.0~80.0	S		
$transmittance\tau_v$	For Cat. 2: 18.0~43.0	11.6	110	0.03
(380~780)nm (%)	For Cat. 3: 8.0~18.0	11.6	11.9	Cat.3
The compliant	For Cat. 4: 3.0~8.0	Attestation	C meet	
Filter categories	Claimed Cat.: (Not Provided)			100-
τ _{SUVB} (280~315)nm (%)	 For Cat.0, 1:≤0.05τ_v For Cat.2: 1.0% absolute or 0.05τ_v whichever is greater; For Cat.3, 4:1.0% absolute 	0.0	0.0	PG
τ _{SUVA} (315~380)nm (%)	For Cat.0, $1: \le \tau_v$; For Cat.2, $3: \le 0.5\tau_v$ For Cat.4:1.0% absolute or $0.25\tau_v$ whichever is greater	0.0	0.1	P
τ _{sb} (380~500)nm (%)		7.6	7.8	Only Ref.

Measurement Uncertainty (if necessary):

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.

No.18 C

Report No.: AGC03778181201-005S1

Date: Dec.21, 2018

Page 5 of 10

Uniformity of luminous transmittance —Clause 5.3.1

Test Items	Requirements	Left	Right	Result(s)
Difference within filter (%) (relative to higher value)	The relative difference in the luminous transmittance value shall not be greater than 10%, except for Cat. 4 where it shall not be greater than 20%	5.7	7.8	P
Difference with mounted filters (relative to higher value)	The relative difference between the luminous transmittance value of the visual center for right and left eye shall not exceed 15%	ACC 2	.5	P F

Measurement Uncertainty (if necessary):

Requirements for road use and driving — Clause 5.3.2

Test Items	Requirements	Left	Right	Result(s)
Categories	Filters suitable for road use and driving shall be categories 0, 1, 2 or 3	Cat.3	Cat.3	РС
Spectral transmittance (475~650)nm (%)	$\geq 0.2\tau_v$	9.7 $(0.2\tau_v=2.3)$	9.8 $(0.2\tau_v=2.4)$	P
Red Signal	≧0.80	1.248	1.256	
Yellow Signal	≥0.60	1.075	1.079	
Green Signal	≧0.60	0.963	0.960	
Blue Signal	≧0.60	0.932	0.925	No
Driving in twilight or at night(%)	$\tau v \ge 75\%$	11.6	11.9	NA

Measurement Uncertainty (if necessary):

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cett.com.

No.18 C

Attestation of Global Compliance Std. & Tech.

AGC

Test Report

Report No.: AGC03778181201-005S1

Date: Dec.21, 2018

Page 6 of 10

Wide angle scattering —Clause 5.3.3

· · · · · · · · · · · · · · · · · · ·	Wide angle scattering(%)				
Sample Number	Left	Right	- Result		
The second and the se	C ^{2.3}	C ^{2.2}	Р		

Requirements:

The wide angle scattering of the filters in the condition as supplied by the manufacturer shall not exceed the value of 3 %.

Measurement Uncertainty (if necessary):

Refractive power—Clause 6

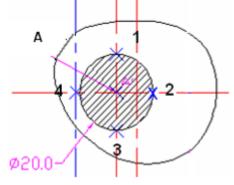
Test Items		Rec	Requirements		Right	Result(s)
	1	± 0.12D	The terminance of the First Const	+0.02	+0.01	Р
Spherical Power	(D)		between the spherical ot exceed 0.18 D;	0.	01	Р
Astigmatic Powe	er (D)	≦0.12D	The second	0.00	0.00	P O
I I	Handance -	The Commence	· 1*	+0.01	+0.01	CC C
	Spherical	G 12D	2*	+0.02	+0.02	D
	Power	± 0.12D	3*	+0.01	+0.02	P
Local variations	The the second		4*	+0.02	+0.01	
in refractive power (D)	Nitestation O	G	1*	0.01	0.00	
No.	Astigmatic		2*	0.02	0.01	© 4
Power	_	$\geq 0.12D$	3*	0.01	0.01	G P
	C Austri		4*	0.00	0.01	the The
Prism imbalance			Base Out: <1.00	The second second		Gobal Commun
		Horizontal	Base In: <0.25	0.16		Р
(cm/m)		Vertical	<0.25	0.22		1

Measurement Uncertainty (if necessary):

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at the confirm

Attestation of Global Compliance Std. & Tech.

No.18 C



Report No.: AGC03778181201-005S1

Date: Dec.21, 2018

Page 7 of 10

Note: * See figure: Key: A =Reference points X = Measure point

Figure: Measuring Location of refractive power

Minimum robustness of filters — Clause 7.1

Commun Change Connect	Defe	ects		to the set	
Sample Number	Observed	Absent	Comment	Result	
F Jacob Hanne O F	For a const company of the	xC		Р	
The station All					

Requirements:

None of the following defects shall appear on filters :

- 1. Filter fracture;
- 2. Filter deformation;

Frame deformation and retention of filters —Clause 7.2

	Sample	Boxed center Residual I Distance C Deformation		Deformation	Structure		Lens Retention			
510	Number	(mm)	Deformation X (mm)	Percentage Φ(%)	Pass	Fail	Pass	Fail	Result	
	1	73.00	0.06	0.1	X	F K Coba Cor	X	Francis and Con	Р	

Requirements:

1. Be permanently deformed from its original configuration by not more than 2% of the distance C,.

- Deformation percentage Φ ; Calculation: Φ (%) =X/C*100
- 2. No fracture or crack at any point ;
- 3. No filter shall be displaced from the frame.

Measurement Uncertainty (if necessary):

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-eett.com.

Attestation of Global Compliance Std. & Tech.

No.18 C

Report No.: AGC03778181201-005S1

Date: Dec.21, 2018

Page 8 of 10

Resistance to Radiation — Clause 8

Test Items		Requirem	nents	Left	Right	Result(s)
		For Cat. 0:<±3%	Before exposure	11.6	11.9	a fuestion
The relative ch luminous trans	and an and an	For Cat. 1: $\leq \pm 5\%$ For Cat. 2: $\leq \pm 8\%$	After exposure	11.6	11.8	Р
	inittanee	For Cat. 3, $4:\le\pm10\%$	Difference	0.0	-0.8	
Wide angle scatteringAfter exposure, the value of wid scattering shall not exceed the line of 3%;		17. 1. 10 ⁰	2.3	2.3	6 Cp	
Requirements for the ultraviolet	τ _{SUVB} (280~315) nm (%)	For Cat. 0,1: $\leq 0.05\tau_v$ For Cat. 2:1.0% absolute or $0.05\tau_v$ whichever is greater; For Cat. 3, 4:1.0% absolute		0.0	0.0	P
spectral range for τ _v (%)	τ _{SUVA} (315~380) nm (%)	For Cat. 0,1: $\leq \tau_v$; For Cat. 2, 3: $\leq 0.5\tau_v$ For Cat. 4: 1.0% absolute or 0.25 τ_v whichever is greater;		0.0	0.0	Р

Measurement Uncertainty (if necessary):

Ignition—Clause 9

8	Sample Number		Continue	ed combustion	Comment	Result
	So Sample I	umber	Yes	No	Comment	Kesuit
	1	The Commerce	F Containe	X	C Allesanord Construction	Р

Requirements:

The filters and frame shall be no continued combustion after withdrawal of the test rod.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.

No.18 C

Attestation of Global Compliance Std. & Tech.

AGC

Report No.: AGC03778181201-005S1

Date: Dec.21, 2018

Page 9 of 10

Coverage area — Clause 11.1

Sample	Туре	Test	Coverage area			The state of
Number	(Adult/Children)	Position	Pass	Fail	Comment	Result
The same of the comment	· · · · ·	Left	X	All second and	C **** - 20	Р
G	Adults	Right	X		A the man the the term	are P O and

Requirements:

1. Adults' sunglasses shall cover two ellipses of horizontal diameter of 40mm and a vertical diameter of 28mm, the centres of which are separated 64mm and symmetrically placed on either side of the centre of the nose bridge of the frame.

2. Children's sunglasses shall cover two ellipses of horizontal diameter of 34mm and a vertical diameter of 24mm, the centres of which are separated 54mm and symmetrically placed on either side of the centre of the nose bridge of the frame.

Sample description:

L Jalon of GU	Blue lens

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ASC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.

Attestation of Global Compliance Std. & Tech.

Report No.: AGC03778181201-005S1

Date: Dec.21, 2018

Page 10 of 10

Sample Information

Model	Sample Name
MO9034-37	plastic bi-color outer in Black and inner in Blue with blue mirror lens
MO9521-37	Stainless iron silver color with blue mirror lens (blue pouch)
MO8652-04	plastic Transparent frosty white frame and blue leg with blue mirror lens

This report is to supersede the report with No.: AGC03778181201-005 dated on Dec.18,2018.

The photo of the sample

AGC03778181201-005S1 AGC authenticate the photo on original report only *** End of Report***

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-celt.com. 18

\GC Attestation of Global Compliance Std. & Tech.

Tel: +86-755 8358 3833 Fax: +86-755 2531 6612 E-mail: agc01@agc-cert.com @ 400 089 2118 Add: Building 2, No.171, Meihua Road, Shangmeilin, Futian District, Shenzhen, Guangdong China

NO.

Report No.: AGC03778181201-006S2

Date: Jan.14, 2019

Page 1 of 10

Applicant: MID OCEAN BRANDS B.V

7/F, Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon, Hong Kong

Report on the submitted samples said to be:

:	See Sample Information
:	See Sample Information
:	101191
i.	Dec.03, 2018
Alle	Dec.03, 2018 to Dec.18, 2018
	:

Test Method

Address:

Please refer to next page(s).

Test Result

Thease refer to next puge(s)

: Please refer to next page(s).

Test Requested

1.ISO 12312-1:2013+A1:2015, excluding:

- Clause 12 Information and labeling

Conclusion

Pass

Jay Approved by Liujinliang, Jay.Liu Laboratory Supervisor

The results shown if this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cett.com.

Attestation of Global Compliance Std. & Tech.

Tel: +86-755 8358 3833 Fax: +86-755 2531 6612 E-mail: agc01@agc-cert.com @ 400 089 2118 Add: Building 2, No.171, Meihua Road, Shangmeilin, Futian District, Shenzhen, Guangdong China

18

Test Report

Date: Jan.14, 2019

Report No.: AGC03778181201-006S2

1.Tests Conducted Summary:

(1) Requirements for Sunglasses

Test standard: - ISO 12312-1:2013+A1:2015

- ISO 12311:2013

Eye and face protection — Sunglasses and related eyewear — Part 1: Sunglasses for general use Personal protective equipment — Test methods for Sunglasses and related eyewear

Page 2 of 1

Note: The applicant's attention was drawn that the manufacturer should not use the frame materials which are known to cause irritation, allergic or toxic reaction during wear in a normal state of health against significant proportion of users.

CLAUSES	C RI	EQUIREMENTS	RESULT		
4 Construction	on and materials	The the state of t	Freshtion of Globa		
4.1	Construction	Construction			
4.2	Filter material and surface qualit	y y	Р		
4.3	Physiological compatibility (Nic	kel Release)	NA		
5 Transmitta	nce	A Standard Contraction Contraction	a G		
5.2	Transmittance and filter	Filter categories	Cat.3		
Allestand C	categories	UV requirements	P		
5.3 General tr	ansmittance requirements	T. F. Martine and T. T. Strandorm	Restation of Glove C		
5.3.1	Uniformity of luminous transmit	ttance	Р		
C Thestation of C	2 Requirements for road use and driving	5.3.2.2 Spectral transmittance	Р		
5.3.2		5.3.2.3 Detection of signal lights	P ad circular		
	diving	5.3.2.4 Driving in twilight or at night	NA		
5.3.3	Wide angle scattering	GC GC A	Р		
S	Additional transmittance	5.3.4.1 Photochromic filters	NA		
5.3.4	requirements for specific filter	5.3.4.2 Polarizing filters	NA		
The the particular	types	5.3.4.3 Gradient filters	NA		
6 Refractive	power				
6.1	Spherical and astigmatic power	THE THE SCHOOL	P		
6.2	Local variations in refractive por	wer	Prosession P		
6.3	Prism imbalance (relative prism	error)	Р		

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ASC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.

No.18 C

Attestation of Global Compliance Std. & Tech.

Report No.: AGC03778181201-006S2

Date: Jan.14, 2019

Page 3 of 10

CLAUSES	REQUIREMENTS	RESULT
7 Robustn	ess and the second s	Marce @ # The come
7.1	Minimum robustness of filters	Р
7.2	Frame deformation and retention of filters	Р
8	Resistance to solar radiation	P P
9	Resistance to ignition	Р
11 Protect	ive requirements	· The termine
11.1	Coverage area	e Amandor P
12 Inform	ation and labeling	
12.1	Information to be supplied with each pair of sunglasses	NR
12.2	Additional information	NR

Remark: P=Pass; F=Fail; NA=Not Applicable; NR=Not Require; X=Checked; Cat.=Category;

Test Results

Construction—Clause 4.1 and Filter material and surface quality —Clause 4.2

G		S		Defects		The manage	C The son of Goba Con	
	Sample Number	Constr	uction	Filter material an	d surface quality	Comment	Result	
ST.	A march ()	Observed	Absent	Observed	Absent			
Clos	100	2	Х		X	······································	Р	

Requirements:

1. Construction shall be smooth and without sharp projections;

2. Filter material and surface quality: Except in a marginal area 5 mm wide, sunglass filters shall have no material or machining defects within an area of 30mm diameter around the reference point that may impair vision, e.g. bubbles, scratches, inclusions, dull spots, pitting, mould marks, notches, reinforced points, specks, beads, water specks, pocking, gas inclusions, splintering, cracks, polishing defects or undulations.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ASC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.

No.18 C

Attestation of Global Compliance Std. & Tech.

Report No.: AGC03778181201-006S2

Date: Jan.14, 2019

Page 4 of 10

Transmittance and filter categories —Clause 5.2

Sample No.: 1		1117-	- TH	The Compland
Test Items	Requirements	Left	Right	Result(s)
The the companies	For Cat. 0: 80.0~100	on of Con		N
Luminous	For Cat. 1: 43.0~80.0	SO		
$transmittance \tau_v$	For Cat. 2: 18.0~43.0	17.0	10.5	0.42
(380~780)nm (%)	For Cat. 3: 8.0~18.0		18.5	Cat.3
The Computer	For Cat. 4: 3.0~8.0	Autostation	C The D	0
Filter categories	Claimed Cat.: (Not Provided)			100:
τ _{SUVB} (280~315)nm (%)	 For Cat.0, 1:≤0.05τ_v For Cat.2: 1.0% absolute or 0.05τ_v whichever is greater; For Cat.3, 4:1.0% absolute 	0.0	0.0	PG
τ _{SUVA} (315~380)nm (%)	For Cat.0, $1: \le \tau_v$; For Cat.2, $3: \le 0.5\tau_v$ For Cat.4:1.0% absolute or $0.25\tau_v$ whichever is greater	0.0	0.1	P
τ _{sb} (380~500)nm (%)	Non - You	14.4	14.2	Only Ref.

Measurement Uncertainty (if necessary):

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.

No.18 C

Report No.: AGC03778181201-006S2

Date: Jan.14, 2019

Page 5 of 10

Uniformity of luminous transmittance —Clause 5.3.1

Test Items	Requirements	Left	Right	Result(s)
Difference within filter (%) (relative to higher value)	The relative difference in the luminous transmittance value shall not be greater than 10%, except for Cat. 4 where it shall not be greater than 20%	3.8	2.0	Р
Difference with mounted filters (relative to higher value)	The relative difference between the luminous transmittance value of the visual center for right and left eye shall not exceed 15%		.0	P

Measurement Uncertainty (if necessary):

Requirements for road use and driving — Clause 5.3.2

Test Items	Requirements	Left	Right	Result(s)
Categories	Filters suitable for road use and driving shall be categories 0, 1, 2 or 3	Cat.3	Cat.3	РС
Spectral transmittance (475~650)nm (%)	$\geq 0.2\tau_v$	6.4 (0.2 τ_v =2.0)	5.8 ($0.2\tau_v=2.0$)	P
Red Signal	≧0.80	0.962	0.986	
Yellow Signal	≥0.60	1.008	1.023	
Green Signal	≧0.60	1.042	1.030	P ®
Blue Signal	≧0.60	0.875	0.851	200
Driving in twilight or at night(%)	$\tau v \ge 75\%$	10.1	9.8	NA

Measurement Uncertainty (if necessary):

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.

No.18 C

Attestation of Global Compliance Std. & Tech.

AGC

Test Report

Report No.: AGC03778181201-006S2

Date: Jan.14, 2019

Page 6 of 10

Wide angle scattering —Clause 5.3.3

10 81	Contraction of Contraction	Wide angle	scattering(%)	D. IN
G	Sample Number	Left	Right	- Result
Atteste	F. H. Kanadar	C ^{2.2}	GC _{2.2}	Р

Requirements:

The wide angle scattering of the filters in the condition as supplied by the manufacturer shall not exceed the value of 3 %.

Measurement Uncertainty (if necessary):

Refractive power—Clause 6

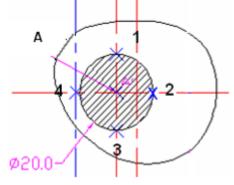
Test I	tems	Req	luirements	Left	Right	Result(s)
	No.	± 0.12D	The formation of the second of the	-0.02	-0.03	Р
Spherical Power	(D)		between the spherical ot exceed 0.18 D;	0.	01	Р
Astigmatic Powe	er (D)	≦0.12D	To the all	0.00	0.00	P O
The state	Handance -	The Company	1*	-0.02	-0.02	CC C
	Spherical Power	± 0.12D	2*	-0.03	-0.02	Р
			3*	-0.02	-0.01	
Local variations			4*	-0.01	-0.03	
in refractive power (D)	Astigmatic Power	C *	1*	0.02	0.02	
AGe		-0.100	2*	0.02	0.01	
		≦0.12D	3*	0.00	0.02	G P
		CO	4*	0.01	0.02	the The
	0		Base Out: <1.00	The second secon		Global Commun
Prism imbalance		Horizontal	Base In: <0.25	0.03		Р
(cm/m)		Vertical	<0.25	0.03		~

Measurement Uncertainty (if necessary):

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at the confirm

Attestation of Global Compliance Std. & Tech.

No.18 C



Report No.: AGC03778181201-006S2

Date: Jan.14, 2019

Page 7 of 10

Note: * See figure: Key: A =Reference points X = Measure point

Figure: Measuring Location of refractive power

Minimum robustness of filters — Clause 7.1

Commun Change Connect	Defe	ects		Result	
Sample Number	Observed	Absent	Comment		
F Jacob Hanne O F	For a const company of the	xC		Р	
The station All					

Requirements:

None of the following defects shall appear on filters :

- 1. Filter fracture;
- 2. Filter deformation;

Frame deformation and retention of filters —Clause 7.2

Samp	Boxed	comp	and the second	Deformation Percentage Φ(%)	Structure		Lens Retention			
Numb	oer Distai		Deformation X (mm)		Pass	Fail	Pass	Fail	Result	
1	72.	72	0.04	0.1	X	Fractional Con	X	Hallon of Global Con	Р	

Requirements:

1. Be permanently deformed from its original configuration by not more than 2% of the distance C,.

- Deformation percentage Φ ; Calculation: Φ (%) =X/C*100
- 2. No fracture or crack at any point ;
- 3. No filter shall be displaced from the frame.

Measurement Uncertainty (if necessary):

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-eett.com.

Attestation of Global Compliance Std. & Tech.

No.18 C

Report No.: AGC03778181201-006S2

Date: Jan.14, 2019

8 Page

Resistance to Radiation — Clause 8

Test It	ems	Requirem	nents	Left	Right	Result(s)
		For Cat. 0:<±3% Before exposure		17.9	18.5	diesia
The relative ch luminous trans	2 stobal	For Cat. 1: $\leq \pm 5\%$ For Cat. 2: $\leq \pm 8\%$	After exposure	18.5	18.7	Р
iummous transmittance		For Cat. 3, $4:\le\pm10\%$	Difference	3.4	1.1	
Wide angle scattering		After exposure, the value of wide angle scattering shall not exceed the limit value of 3%;		2.2	2.3	G P
Requirements for the ultraviolet	τ _{SUVB} (280~315) nm (%)	For Cat. $0,1: \leq 0.05\tau_v$ For Cat. $2:1.0\%$ absolu whichever For Cat. $3, 4:1.0\%$ abso	0.0	0.0	P	
spectral range for τ _v (%)	τ _{SUVA} (315~380) nm (%)	For Cat. 0,1: $\leq \tau_v$; For Cat. 2, 3: $\leq 0.5\tau_v$ For Cat. 4: 1.0% absolute or 0.25 τ_v whichever is greater;		0.0	0.0	P

Measurement Uncertainty (if necessary):

Ignition—Clause 9

3	Sample Number		Continue	ed combustion	Comment	Result	
	GC mer S		Yes	No	Comment	Kesuit	
		1 Harmon	The State Company	X	Contraction of Contraction	Р	

Requirements:

AGC

The filters and frame shall be no continued combustion after withdrawal of the test rod.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.

Attestation of Global Compliance Std. & Tech. Add: Building 2, No.171, Meihua Road, Shangmeilin, Futian District, Shenzhen, Guangdong China

No.

18

Report No.: AGC03778181201-006S2

Date: Jan.14, 2019

Page 9 of 10

Coverage area — Clause 11.1

Sample	Туре	Test	Covera	ige area		Dentil	
Number	(Adult/Children)	Position	Pass	Fail	Comment	Result	
Francisco a Good Comm	Adults -	Left	X	All and a second	C **** - 20	Р	
in I		Right	X		A Barton - the Frank	P	

Requirements:

1. Adults' sunglasses shall cover two ellipses of horizontal diameter of 40mm and a vertical diameter of 28mm, the centres of which are separated 64mm and symmetrically placed on either side of the centre of the nose bridge of the frame.

2. Children's sunglasses shall cover two ellipses of horizontal diameter of 34mm and a vertical diameter of 24mm, the centres of which are separated 54mm and symmetrically placed on either side of the centre of the nose bridge of the frame.

Sample description:

6	7 3.1	
S.	The tation	Green lens
	402	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ASC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.

Attestation of Global Compliance Std. & Tech.

Report No.: AGC03778181201-006S2

Date: Jan.14, 2019

Page 10 of 10

Sample Information

Model	Sample Name			
MO9034-48	plastic bi-color outer in Black and inner in Lime with lime mirror lens			
MO9521-48	Stainless iron silver color with lime mirror lens(lime pouch)			
MO8652-09 plastic Transparent frosty white frame and green leg with lime mirror len				
MO9022-40	plastic in wood pattern and matt finish with green mirror lens			

This report is to supersede the report with No.: AGC03778181201-006S1 dated on Dec.21,2018.

The photo of the sample

AGC03778181201-006S2 AGC authenticate the photo on original report only *** End of Report***

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.

Attestation of Global Compliance Std. & Tech.

Report No.: AGC03778181201-004S1

Date: Dec.21, 2018

Page 1 of 10

Applicant: MID OCEAN BRANDS B.V

7/F, Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon, Hong Kong

Report on the submitted samples said to be:

Sample Name	:	See Sample Information
Model	:	See Sample Information
Manufacturers	:	101191
Sample Receiving Date	15%	Dec.03, 2018
Testing Period	Atto	Dec.03, 2018 to Dec.18, 2018

Test Method

Address:

Please refer to next page(s).

Test Result

Thease refer to next page(3)

: Please refer to next page(s).

Test Requested

1.ISO 12312-1:2013+A1:2015, excluding:

- Clause 12 Information and labeling

Conclusion

Pass

Jay Approved by Liujinliang, Jay.Liu Laboratory Supervisor

18

The results shown if this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cett.com.

Attestation of Global Compliance Std. & Tech.

Test Report

Report No.: AGC03778181201-004S1

Date: Dec.21, 2018

Page 2 of 10

1.Tests Conducted Summary:(1) Requirements for Sunglasses

Test standard: - ISO 12312-1:2013+A1:2015

- ISO 12311:2013

Eye and face protection — Sunglasses and related eyewear — Part 1: Sunglasses for general use Personal protective equipment — Test methods for Sunglasses and related eyewear

Note: The applicant's attention was drawn that the manufacturer should not use the frame materials which are known to cause irritation, allergic or toxic reaction during wear in a normal state of health against significant proportion of users.

CLAUSES	C RI	EQUIREMENTS	RESULT					
4 Construction	on and materials	The the state of t	Freshtion of Globa					
4.1	Construction	onstruction						
4.2	Filter material and surface qualit	y y	Р					
4.3	Physiological compatibility (Nic	kel Release)	NA					
5 Transmitta	nce	A Standard Contraction Contraction	a G					
5.2	Transmittance and filter	Filter categories	Cat.3					
Allestand C	categories	UV requirements	P					
5.3 General tr	ansmittance requirements	T. F. Martine and T. T. Strandorm	Restation of Glove C					
5.3.1	Uniformity of luminous transmit	ttance	Р					
C Thestation of C	C Alleshord	5.3.2.2 Spectral transmittance	Р					
5.3.2	Requirements for road use and driving	5.3.2.3 Detection of signal lights	P and choose Co					
	diving	5.3.2.4 Driving in twilight or at night	NA					
5.3.3	Wide angle scattering	GC GC A	Р					
S	Additional transmittance	5.3.4.1 Photochromic filters	NA					
5.3.4	requirements for specific filter	5.3.4.2 Polarizing filters	NA					
The the particular	types	5.3.4.3 Gradient filters	NA					
6 Refractive	power							
6.1	Spherical and astigmatic power	THE THE SCHOOL	P					
6.2	Local variations in refractive por	wer	Prosession P					
6.3	Prism imbalance (relative prism	Prism imbalance (relative prism error)						

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ASC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.

No.18 C

Attestation of Global Compliance Std. & Tech.

Report No.: AGC03778181201-004S1

Date: Dec.21, 2018

Page 3 of 10

CLAUSES	REQUIREMENTS	RESULT
7 Robustn	ess and the second s	Marce @ # The come
7.1	Minimum robustness of filters	Р
7.2	Frame deformation and retention of filters	Р
8	Resistance to solar radiation	P P
9	Resistance to ignition	Р
11 Protect	ive requirements	· The tell
11.1	Coverage area	e Amandor P
12 Inform	ation and labeling	
12.1	Information to be supplied with each pair of sunglasses	NR
12.2	Additional information	NR

Remark: P=Pass; F=Fail; NA=Not Applicable; NR=Not Require; X=Checked; Cat.=Category;

Test Results

Construction—Clause 4.1 and Filter material and surface quality —Clause 4.2

		S		To the man	C & Good Clobal Con		
	Sample Number	Construction		Filter material an	d surface quality	Comment	Result
ST.	Sample C	Observed	Absent	Observed	Absent		
Clos	100	2	Х		X	······································	Р

Requirements:

1. Construction shall be smooth and without sharp projections;

2. Filter material and surface quality: Except in a marginal area 5 mm wide, sunglass filters shall have no material or machining defects within an area of 30mm diameter around the reference point that may impair vision, e.g. bubbles, scratches, inclusions, dull spots, pitting, mould marks, notches, reinforced points, specks, beads, water specks, pocking, gas inclusions, splintering, cracks, polishing defects or undulations.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ASC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.

No.18 C

Attestation of Global Compliance Std. & Tech.

Report No.: AGC03778181201-004S1

Date: Dec.21, 2018

Page 4 of 10

Transmittance and filter categories —Clause 5.2

Sample No.: 1		1117-		The Compland
Test Items	Requirements	Left	Right	Result(s)
The the companies	For Cat. 0: 80.0~100	on of Con		N
Luminous	For Cat. 1: 43.0~80.0	SO		
$transmittance \tau_v$	For Cat. 2: 18.0~43.0	12.2	124	0.42
(380~780)nm (%)	For Cat. 3: 8.0~18.0		13.4	Cat.3
The Complete	For Cat. 4: 3.0~8.0	Allesadon	C here P	9
Filter categories	Claimed Cat.: (Not Provided)			litte:
τ _{SUVB} (280~315)nm (%)	 For Cat.0, 1:≤0.05τ_v For Cat.2: 1.0% absolute or 0.05τ_v whichever is greater; For Cat.3, 4:1.0% absolute 	0.0	0.0	PC
τ _{suva} (315~380)nm (%)	For Cat.0, $1: \le \tau_v$; For Cat.2, $3: \le 0.5\tau_v$ For Cat.4:1.0% absolute or $0.25\tau_v$ whichever is greater	0.0	0.1	P
τ _{sb} (380~500)nm (%)		10.8	10.2	Only Ref.

Measurement Uncertainty (if necessary):

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.

No.18 C

Report No.: AGC03778181201-004S1

Date: Dec.21, 2018

Page 5 of 10

Uniformity of luminous transmittance —Clause 5.3.1

Test Items	Requirements	Left	Right	Result(s)
Difference within filter (%) (relative to higher value)	The relative difference in the luminous transmittance value shall not be greater than 10%, except for Cat. 4 where it shall not be greater than 20%	0.7	8.5	P
Difference with mounted filters (relative to higher value)	The relative difference between the luminous transmittance value of the visual center for right and left eye shall not exceed 15%		.7	P

Measurement Uncertainty (if necessary):

Requirements for road use and driving — Clause 5.3.2

Test Items	Requirements	Left	🧼 🐘 Right	Result(s)
Categories	Filters suitable for road use and driving shall be categories 0, 1, 2 or 3	Cat.3	Cat.3	РС
Spectral transmittance (475~650)nm (%)	$\geq 0.2\tau_v$	11.4 $(0.2\tau_v=2.7)$	11.8 ($0.2\tau_v=2.7$)	P Contraction
Red Signal	≧0.80	1.025	1.015	
Yellow Signal	≥0.60	1.025	0.979	
Green Signal	≧0.60	1.017	1.020	P of the second se
Blue Signal	≧0.60	1.074	1.052	NO
Driving in twilight or at night(%)	$\tau v \ge 75\%$	13.3	13.4	NA

Measurement Uncertainty (if necessary):

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.

No.18 C

Attestation of Global Compliance Std. & Tech.

AGC

Test Report

Report No.: AGC03778181201-004S1

Date: Dec.21, 2018

Page 6 of 10

Wide angle scattering —Clause 5.3.3

G The second of	Wide angle s		
Sample Number	Left	Right	- Result
F. T. K. Manager	C ^{2.3}	C ^{2.4}	Р

Requirements:

The wide angle scattering of the filters in the condition as supplied by the manufacturer shall not exceed the value of 3 %.

Measurement Uncertainty (if necessary):

Refractive power—Clause 6

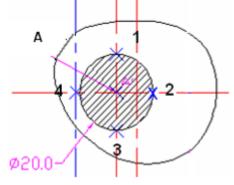
Test I	tems	Rec	quirements	Left	Right	Result(s)
	15.	± 0.12D	The Compliance & The Strat	+0.02	+0.01	Р
Spherical Power	(D)		e between the spherical ot exceed 0.18 D;	0.0)1	Р
Astigmatic Powe	er (D)	≦0.12D	To the man	0.00	0.00	P O
Th	Hannance	The the Man	° 1* °	+0.01	+0.02	CCC
	Spherical	G 12D	2*	+0.02	+0.01	
	Power	± 0.12D	3*	+0.01	+0.01	P
Local variations	The The Compton	a F a conta co	4* 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	+0.02	+0.02	
n refractive	Attestation of	C Trees	1*	0.02	0.00	
No	Astigmatic	2*	0.01	0.01	© 4	
Power	-	≦0.12D	3*	0.01	0.02	C P
	C The st		4*	0.01	0.01	No. THE
A			Base Out: <1.00	0.18		Global Comm
Prism imbalanc	te The	Horizontal	Base In: <0.25			Р
(cm/m)		Vertical	<0.25	0.16		1

Measurement Uncertainty (if necessary):

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at the confirm

Attestation of Global Compliance Std. & Tech.

No.18 C



Report No.: AGC03778181201-004S1

Date: Dec.21, 2018

Page 7 of 10

Note: * See figure: Key: A =Reference points X = Measure point

Figure: Measuring Location of refractive power

Minimum robustness of filters — Clause 7.1

Commun Change Connect	Defe	ects		Result
Sample Number	Observed	Absent	Comment	
F Jacob Hanne O F	For a const company of the	xC		Р
The station All				

Requirements:

None of the following defects shall appear on filters :

- 1. Filter fracture;
- 2. Filter deformation;

Frame deformation and retention of filters —Clause 7.2

	Sample	Boxed center	and the second	Deformation	Struc	ture	Lens R	etention	
510	Number	(mm)	Deformation X (mm)	Percentage Φ(%)	Pass	Fail	Pass	Fail	Result
	1	73.00	0.08	0.1	X	F K Coba Cor	X	Francis and Con	Р

Requirements:

1. Be permanently deformed from its original configuration by not more than 2% of the distance C,.

- Deformation percentage Φ ; Calculation: Φ (%) =X/C*100
- 2. No fracture or crack at any point ;
- 3. No filter shall be displaced from the frame.

Measurement Uncertainty (if necessary):

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-eett.com.

Attestation of Global Compliance Std. & Tech.

No.18 C

Report No.: AGC03778181201-004S1

Date: Dec.21, 2018

Page 8 of 10

Resistance to Radiation — Clause 8

Test It	ems	Requirem	nents	Left	Right	Result(s)	
		For Cat. 0:<±3%	Before exposure	13.3	13.4	diesta.	
The relative ch luminous trans	all	For Cat. 1: $\leq \pm 5\%$ For Cat. 2: $\leq \pm 8\%$	After exposure	13.4	13.3	Р	
	linitianee	For Cat. 3, $4:\le\pm10\%$	Difference	0.8	-0.7	0.5 13	
Wide angle sc	attering	After exposure, the value of wide angle scattering shall not exceed the limit value of 3%;		2.3	2.4	G P	
Requirements for the ultraviolet	τ _{SUVB} (280~315) nm (%)	For Cat. 0,1: $\leq 0.05\tau_v$ For Cat. 2:1.0% absolute or $0.05\tau_v$ whichever is greater; For Cat. 3, 4:1.0% absolute		0.0	0.0	P	
spectral range for τ _v (%)	τ _{SUVA} (315~380) nm (%)	For Cat. $0,1: \leq \tau_v$; For Cat. 2, $3: \leq 0.5\tau_v$ For Cat. 4: 1.0% absolute or $0.25\tau_v$ whichever is greater;		0.0	0.0	P	

Measurement Uncertainty (if necessary):

Ignition—Clause 9

Sample Number			ued combustion	- Comment	Result	
		Yes	No		incount and a second com	
		The second second	X	C Therefore Contraction	Р	

Requirements:

AGC

The filters and frame shall be no continued combustion after withdrawal of the test rod.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.

Attestation & Global Compliance Std. & Tech. Tel: +86-755 8358 3833

Tel: +86-755 8358 3833 Fax: +86-755 2531 6612 E-mail: agc01@agc-cert.com @ 400 089 2118 Add: Building 2, No.171, Meihua Road, Shangmeilin, Futian District, Shenzhen, Guangdong China

No.

18

Report No.: AGC03778181201-004S1

Date: Dec.21, 2018

Page 9 of 10

Coverage area — Clause 11.1

Sample Type		Test	Covera	ge area		Dent	
	(Adult/Children)	Position	Pass	Fail	Comment	Result	
The same of the comment	• A dulta	Left	X	All second and	C **** - 20	Р	
G	Adults	Right	X		A the man the the term	are P O and	

Requirements:

1. Adults' sunglasses shall cover two ellipses of horizontal diameter of 40mm and a vertical diameter of 28mm, the centres of which are separated 64mm and symmetrically placed on either side of the centre of the nose bridge of the frame.

2. Children's sunglasses shall cover two ellipses of horizontal diameter of 34mm and a vertical diameter of 24mm, the centres of which are separated 54mm and symmetrically placed on either side of the centre of the nose bridge of the frame.

Sample description:

-	- S GIO	
3	The Hon	Orange-yellow lens
	and state	Orange yenow tens

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ASC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.

Attestation of Global Compliance Std. & Tech.

Report No.: AGC03778181201-004S1

Date: Dec.21, 2018

Page 10 of 10

Sample Information

Model	Sample Name
MO9034-10	plastic bi-color outer in Black and inner in Orange with orange mirror lens
MO9521-10	Stainless iron gold color with orange mirror lens(orange pouch)
MO8652-10	plastic Transparent frosty white frame and orange leg with orange mirror lens

The photo of the sample

This report is to supersede the report with No.: AGC03778181201-004 dated on Dec.18,2018.

AGC03778181201-004S1 AGC authenticate the photo on original report only *** End of Report***

The results shown if this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-celt.com. 8

Attestation of Global Compliance Std. & Tech.

AGC

Report No.: AGC03778181201-002S1

Date: Dec.21, 2018

Page 1 of 10

Applicant: MID OCEAN BRANDS B.V

7/F, Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon, Hong Kong

Report on the submitted samples said to be:

Sample Name : See Sample Information			
Model	:	See Sample Information	
Manufacturers	:	101191	
Sample Receiving Date	15%	Dec.03, 2018	
Testing Period	Atto	Dec.03, 2018 to Dec.18, 2018	

Test Method

Address:

Please refer to next page(s).

Test Result

Thease refer to next page(s)

: Please refer to next page(s).

Test Requested

1.ISO 12312-1:2013+A1:2015, excluding:

- Clause 12 Information and labeling

Conclusion

Pass

Jay Approved by Liujinliang, Jay.Liu Laboratory Supervisor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed a http://www.agc-cent.com.

Test Report

Report No.: AGC03778181201-002S1

Date: Dec.21, 2018

Page 2 of 10

1.Tests Conducted Summary:(1) Requirements for Sunglasses

Test standard: - ISO 12312-1:2013+A1:2015

- ISO 12311:2013

Eye and face protection — Sunglasses and related eyewear — Part 1: Sunglasses for general use Personal protective equipment — Test methods for Sunglasses and related eyewear

Note: The applicant's attention was drawn that the manufacturer should not use the frame materials which are known to cause irritation, allergic or toxic reaction during wear in a normal state of health against significant proportion of users.

CLAUSES	R	RESULT		
4 Construction	on and materials	The the state of t	Freshtion of Globa	
4.1	Construction	Construction		
4.2	Filter material and surface qualit	y y	Р	
4.3	Physiological compatibility (Nic	kel Release)	NA	
5 Transmitta	nce	A Comment of The Comment of Standard	C Thestallo	
5.2	Transmittance and filter	Filter categories	Cat.3	
Mussellon'	categories	UV requirements	P	
5.3 General tr	ansmittance requirements	The the second sec	Restation of Global C	
5.3.1	Uniformity of luminous transmit	ttance	Р	
C and all of Cli	5.3.2 Requirements for road use and driving	5.3.2.2 Spectral transmittance	Р	
5.3.2		5.3.2.3 Detection of signal lights	P and choose Co	
	diving	5.3.2.4 Driving in twilight or at night	NA	
5.3.3	Wide angle scattering	GC BO BO	Р	
S	Additional transmittance	5.3.4.1 Photochromic filters	NA	
5.3.4	requirements for specific filter	5.3.4.2 Polarizing filters	NA	
The the particular	types	5.3.4.3 Gradient filters	NA	
6 Refractive	power			
6.1	Spherical and astigmatic power	THE THE SCHOOL	P	
6.2	Local variations in refractive po	wer	Puese P	
6.3	Prism imbalance (relative prism	error)	Р	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ASC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.

No.18 C

Attestation of Global Compliance Std. & Tech.

Report No.: AGC03778181201-002S1

Date: Dec.21, 2018

Page 3 of 10

CLAUSES	REQUIREMENTS	RESULT
7 Robustn	ess the second	ine Constantion of Gubal Const
7.1	Minimum robustness of filters	Р
7.2	Frame deformation and retention of filters	Р
8	Resistance to solar radiation	PC PC
9	Resistance to ignition	Р
11 Protect	ive requirements	The the state
11.1	Coverage area	P C
12 Inform	ation and labeling	
12.1	Information to be supplied with each pair of sunglasses	NR
12.2	Additional information	NR

Remark: P=Pass; F=Fail; NA=Not Applicable; NR=Not Require; X=Checked; Cat.=Category;

Test Results

Construction—Clause 4.1 and Filter material and surface quality —Clause 4.2

Sample NumberConstructionObservedAbserved		Defects		The the plane	C . S . S . Const Const	
	Constr	uction	Filter material and surface quality		Comment	Result
	Absent	Observed	Absent			
JCC S	1	Х		X		Р

Requirements:

1. Construction shall be smooth and without sharp projections;

2. Filter material and surface quality: Except in a marginal area 5 mm wide, sunglass filters shall have no material or machining defects within an area of 30mm diameter around the reference point that may impair vision, e.g. bubbles, scratches, inclusions, dull spots, pitting, mould marks, notches, reinforced points, specks, beads, water specks, pocking, gas inclusions, splintering, cracks, polishing defects or undulations.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ASC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.

No.18 C

Attestation of Global Compliance Std. & Tech.

Report No.: AGC03778181201-002S1

Date: Dec.21, 2018

Page 4 of 10

Transmittance and filter categories —Clause 5.2

Sample No.: 1			litter -	The Compliance	
Test Items	Test Items Requirements		Right	Result(s)	
- In the companies	For Cat. 0: 80.0~100	on d Gu	lose C	N	
Luminous	For Cat. 1: 43.0~80.0	S			
$transmittance\tau_v$	For Cat. 2: 18.0~43.0	12.2	110	0.03	
(380~780)nm (%)	For Cat. 3: 8.0~18.0	12.3	11.8	Cat.3	
The Compliant	For Cat. 4: 3.0~8.0	C Allestation of a	C Mest		
Filter categories	Claimed Cat.: (Not Provided)			105	
τ _{SUVB} (280~315)nm (%)	 For Cat.0, 1:≤0.05τ_v For Cat.2: 1.0% absolute or 0.05τ_v whichever is greater; For Cat.3, 4:1.0% absolute 	0.0	0.0	PGG	
τ _{SUVA} (315~380)nm (%)	For Cat.0, $1: \le \tau_v$; For Cat.2, $3: \le 0.5\tau_v$ For Cat.4:1.0% absolute or $0.25\tau_v$ whichever is greater	0.0	0.0	P	
τ _{sb} (380~500)nm (%)		10.7	10.4	Only Ref.	

Measurement Uncertainty (if necessary):

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.

No.18 C

Report No.: AGC03778181201-002S1

Date: Dec.21, 2018

Page 5 of 10

Uniformity of luminous transmittance —Clause 5.3.1

Test Items	Requirements	Left	Right	Result(s)
Difference within filter (%) (relative to higher value)	The relative difference in the luminous transmittance value shall not be greater than 10%, except for Cat. 4 where it shall not be greater than 20%	5.4	4.1	P
Difference with mounted filters (relative to higher value)	The relative difference between the luminous transmittance value of the visual center for right and left eye shall not exceed 15%		1	P

Measurement Uncertainty (if necessary):

Requirements for road use and driving — Clause 5.3.2

Test Items	Requirements	Left	Right	Result(s)
Categories	Filters suitable for road use and driving shall be categories 0, 1, 2 or 3	Cat.3	Cat.3	РС
Spectral transmittance (475~650)nm (%)	$\geq 0.2\tau_v$	11.6 ($0.2\tau_v=2.5$)	11.0 ($0.2\tau_v=2.4$)	P
Red Signal	≧0.80	1.127	1.116	
Yellow Signal	≥0.60	1.027	1.023	
Green Signal	≥0.60	0.984	0.987	P of the second
Blue Signal	≧0.60	1.003	1.008	NO
Driving in twilight or at night(%)	$\tau v \ge 75\%$	12.3	11.8	NA

Measurement Uncertainty (if necessary):

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cett.com.

No.18 C

Attestation of Global Compliance Std. & Tech.

AGC

Test Report

Report No.: AGC03778181201-002S1

Date: Dec.21, 2018

Page 6 of 10

Wide angle scattering —Clause 5.3.3

Contraction of the second	Wide angle scattering(%)			
Sample Number	Left	Right	- Result	
The stand of the s		C ^{1.2}	Р	

Requirements:

The wide angle scattering of the filters in the condition as supplied by the manufacturer shall not exceed the value of 3 %.

Measurement Uncertainty (if necessary):

Refractive power—Clause 6

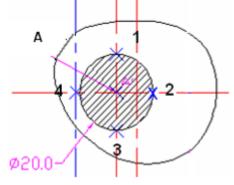
Test I	tems	Rec	quirements	Left	Right	Result(s)	
± 0.12D		The Commence	+0.03	+0.02	Р		
Spherical Power	(D)	The difference between the spherica powers shall not exceed 0.18 D;		0.01		Р	
Astigmatic Powe	er (D)	≦0.12D	The Harmon	0.00	0.00	P O	
- In	Handance -	The Hard Comments	1*	+0.01	+0.01	GC	
	Spherical Power	Spherical	C 12D	2*	+0.02	+0.01	
		by $\pm 0.12D$	3*	+0.01	+0.02	P.A. C	
Local variations	The the parties		4*	+0.02	+0.01		
in refractive power (D)	Attestation of	C	1*	0.01	0.01		
AGe	Astigmatic	Astigmatic	= 0.12D	2*	0.00	0.00	© 4
	Power	$\geq 0.12D$	3*	0.01	0.01	G P	
The state of the s	CO T	4*	0.01	0.00	No. The		
Prism imbalance (cm/m) Vertical		Base Out: <1.00	0.00		Global Comi		
		Horizontal	Base In: <0.25	0.01		Р	
		Vertical	<0.25	0.00		~	

Measurement Uncertainty (if necessary):

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at the confirm

Attestation of Global Compliance Std. & Tech.

No.18 C



Report No.: AGC03778181201-002S1

Date: Dec.21, 2018

Page 7 of 10

Note: * See figure: Key: A =Reference points X = Measure point

Figure: Measuring Location of refractive power

Minimum robustness of filters — Clause 7.1

Commun Carta Stand Co	Defe	ects		
Sample Number	Observed	Absent	Comment	Result
The and a same	The Completion of Completion o	X C int		Р
The station All				24 July 24

Requirements:

None of the following defects shall appear on filters :

- 1. Filter fracture;
- 2. Filter deformation;

Frame deformation and retention of filters —Clause 7.2

Sample	Boxed center	and the second	Deformation	Struc	ture	Lens R	etention	
Number	(mm)	Deformation X (mm)	Percentage Φ(%)	Pass	Fail	Pass	Fail	Result
	72.72	0.10	0.1	X	于 Kata	X	Fr at Cobal Co	Р

Requirements:

1. Be permanently deformed from its original configuration by not more than 2% of the distance C,.

- Deformation percentage Φ ; Calculation: Φ (%) =X/C*100
- 2. No fracture or crack at any point ;
- 3. No filter shall be displaced from the frame.

Measurement Uncertainty (if necessary):

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-eett.com.

Attestation of Global Compliance Std. & Tech.

No.18 C

Report No.: AGC03778181201-002S1

Date: Dec.21, 2018

Page 8 of 10

Resistance to Radiation — Clause 8

Test It	ems	Requirem	nents	Left	Right	Result(s)
For Cat. 0:<±3%		Before exposure	12.3	11.8	tteste	
The relative ch	2 stobal	For Cat. 1: $\leq \pm 5\%$ For Cat. 2: $\leq \pm 8\%$	After exposure	12.2	11.7	Р
luminous transmittanceFor Cat. $2: \le \pm 8\%$ For Cat. $3, 4: \le \pm 10\%$		Difference	-0.8	-0.8		
Wide angle sc	attering	After exposure, the value scattering shall not excord of 3%;		1.4	1.3	S P
Requirements for the ultraviolet	τ _{SUVB} (280~315) nm (%)	For Cat. 0,1: $\leq 0.05\tau_v$ For Cat. 2:1.0% absolute or $0.05\tau_v$ whichever is greater; For Cat. 3, 4:1.0% absolute		0.0	0.0	P
spectral range for τ _v (%)	τ _{SUVA} (315~380) nm (%)	For Cat. $0,1: \leq \tau_v$; For Cat. 2, $3: \leq 0.5\tau_v$ For Cat. 4: 1.0% absolute or $0.25\tau_v$ whichever is greater;		0.0	0.0	P

Measurement Uncertainty (if necessary):

Ignition—Clause 9

3	·	ample Number	Continue	ed combustion	Comment	Result
	GC mer S		Yes	No	Comment	Kesuit
		1 Harmon	The State Company	X	Contraction of Contraction	Р

Requirements:

The filters and frame shall be no continued combustion after withdrawal of the test rod.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.

No.18 C

Attestation of Global Compliance Std. & Tech.

AGC

Report No.: AGC03778181201-002S1

Date: Dec.21, 2018

Page 9 of 10

Coverage area — Clause 11.1

Sample	Туре	Test	Covera	ige area		Develt
Number	(Adult/Children)	Position	Pass	Fail	Comment	Result
Francisco a Good Comm	A dulta	Left	X	All and a second	C **** - 20	Р
in I	Adults	Right	X		A Barton - the Frank	P

Requirements:

1. Adults' sunglasses shall cover two ellipses of horizontal diameter of 40mm and a vertical diameter of 28mm, the centres of which are separated 64mm and symmetrically placed on either side of the centre of the nose bridge of the frame.

2. Children's sunglasses shall cover two ellipses of horizontal diameter of 34mm and a vertical diameter of 24mm, the centres of which are separated 54mm and symmetrically placed on either side of the centre of the nose bridge of the frame.

Sample description:

1 3.0	C:11
The tallor	Silver lens

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ASC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cent.com.

Attestation of Global Compliance Std. & Tech.

Report No.: AGC03778181201-002S1

Date: Dec.21, 2018

Page 10 of 10

Sample Information

Model	Sample Name
MO9034-06	plastic bi-color outer in Black and inner in White with silver mirror lens
MO9521-03	Stainless iron black color with silver mirror lens (black pouch)
MO9522-37	plastic royal blue color with silver mirror lens
MO9522-06	plastic white color with silver mirror lens
MO9522-03	plastic black color with silver mirror lens
MO8652-03	plastic Transparent frosty white frame and black leg with silver mirror lens

This report is to supersede the report with No.: AGC03778181201-002 dated on Dec.18,2018.

The photo of the sample

AGC03778181201-002S1 AGC authenticate the photo on original report only *** End of Report***

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cett.com.

No.18 C

Attestation of Global Compliance Std. & Tech.

AGC

Test Report

Report No.: AGC03778190101-004

Date: Jan.18, 2019

Page

Applicant:	MID OCEAN BRANDS B.V	
Address:	7/F, Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon, Hong Kong	3

Report on the submitted samples said to be:

Sample Name :	See Sample Information
Model :	See Sample Information
Manufacturers :	101191
Sample Receiving Date :	Jan.14, 2019
Testing Period :	Jan.14, 2019 to Jan.18, 2019
Test Method :	Please refer to next page(s).
Test Result :	Please refer to next page(s).

Test Requested:

UV400 (In-house test, and test method refer to attached pages for details)

Conclusion: Pass

Approved by Liujinliang, Jay.Liu

Laboratory Supervisor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-celt.com. 18

\GC Attestation of Global Compliance Std. & Tech.

Tel: +86-755 8358 3833 Fax: +86-755 2531 6612 E-mail: agc01@agc-cert.com @ 400 089 2118 Add: Building 2, No.171, Meihua Road, Shangmeilin, Futian District, Shenzhen, Guangdong China

Report No.: AGC03778190101-004

Date: Jan.18, 2019

Page 2 of 3

Tests Conducted Summary

UV400(In-house test, non-accredited test item)

As requested by the applicant, refer to test procedure of "Resistance to Radiation" in this report, assessment was made against a level of 100% UV protection, in which the spectral transmittance was examined within a range of 280nm-400nm before and after exposure.

Sample Number	Wavelength (nm)	Maximum Spectra	ll transmittance (%)	Result
Sample Number	wavelength (nm)	Left	Right	Kesun
	280-400	0.0	0.1	Pass

Requirements:

Maximum spectral transmittance shall not exceed 0.5%.

Measurement Uncertainty (if necessary):

Sample description:

1 Blue lens

Sample Information

Model	Sample Name
MO9034-37	plastic bi-color outer in Black and inner in Blue with blue mirror lens
MO9521-37	Stainless iron silver color with blue mirror lens (blue pouch)
MO8652-04	plastic Transparent frosty white frame and blue leg with blue mirror lens

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-eet.com.

No.18 C

Attestation of Global Compliance Std. & Tech.

Report No.: AGC03778190101-004

Date: Jan.18, 2019

Page 3 of 3

The photo of the sample

AGC03778190101-004 AGC authenticate the photo on original report only *** End of Report***

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cett.com.

Attestation of Global Compliance Std. & Tech.

AGC

No.18 C

Test Report

Report No.: AGC03778190101-005

Date: Jan.18, 2019

Page

Applicant:	MID OCEAN BRANDS B.V	
Address:	7/F, Kings Tower, 111 King Lam Street, Cheung Sh	a Wan, Kowloon, Hong Kong

Report on the submitted samples said to be:

Sample Name	LCO.	See Sample Information
Model	:	See Sample Information
Manufacturers	:	101191
Sample Receiving Date	Alles	Jan.14, 2019
Testing Period	:	Jan.14, 2019 to Jan.18, 2019
Test Method	:	Please refer to next page(s).
Test Result	:	Please refer to next page(s).

Test Requested:

UV400 (In-house test, and test method refer to attached pages for details)

Conclusion: Pass

Approved by Liujinliang, Jay.Liu

Laboratory Supervisor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-celt.com. 18

\GC Attestation of Global Compliance Std. & Tech.

Tel: +86-755 8358 3833 Fax: +86-755 2531 6612 E-mail: agc01@agc-cert.com @ 400 089 2118 Add: Building 2, No.171, Meihua Road, Shangmeilin, Futian District, Shenzhen, Guangdong China

Report No.: AGC03778190101-005

Date: Jan.18, 2019

Page 2 of 3

Tests Conducted Summary

UV400(In-house test, non-accredited test item)

As requested by the applicant, refer to test procedure of "Resistance to Radiation" in this report, assessment was made against a level of 100% UV protection, in which the spectral transmittance was examined within a range of 280nm-400nm before and after exposure.

Sample Number Wavelength (nm)		Maximum Spectra	Result	
Sample Number waveler	wavelength (nm)	Left	Right	Kesuit
	280-400	0.1	0.1 0	Pass

Requirements:

Maximum spectral transmittance shall not exceed 0.5%.

Measurement Uncertainty (if necessary):

Sample description:

1 Green lens

Sample Information

Model	Sample Name
MO9034-48	plastic bi-color outer in Black and inner in Lime with lime mirror lens
MO9521-48	Stainless iron silver color with lime mirror lens(lime pouch)
MO8652-09	plastic Transparent frosty white frame and green leg with lime mirror lens
MO9022-40	plastic in wood pattern and matt finish with green mirror lens

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-eet.com.

Attestation of Global Compliance Std. & Tech.

Report No.: AGC03778190101-005

Date: Jan.18, 2019

Page 3 of 3

The photo of the sample

AGC03778190101-005 AGC authenticate the photo on original report only End of Report***

The results shown in this is the port refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-celt.com. No. 18 C

Attestation of Global Compliance Std. & Tech.

AGC

Test Report

Report No.: AGC03778190101-003

Date: Jan.18, 2019

Page

Applicant:	MID OCEAN BRANDS B.V	
Address:	7/F, Kings Tower, 111 King Lam Street, Cheung Sha W	Van, Kowloon, Hong Kong

Report on the submitted samples said to be:

Sample Name	:	See Sample Information
Model	:	See Sample Information
Manufacturers	:	101191
Sample Receiving Date	Attest	Jan.14, 2019
Testing Period	:	Jan.14, 2019 to Jan.18, 2019
Test Method	:	Please refer to next page(s).
Test Result	:	Please refer to next page(s).

Test Requested:

UV400 (In-house test, and test method refer to attached pages for details)

Conclusion: Pass

Approved by Liujinliang, Jay.Liu

Laboratory Supervisor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-celt.com. 18

\GC Attestation of Global Compliance Std. & Tech.

Tel: +86-755 8358 3833 Fax: +86-755 2531 6612 E-mail: agc01@agc-cert.com @ 400 089 2118 Add: Building 2, No.171, Meihua Road, Shangmeilin, Futian District, Shenzhen, Guangdong China

Report No.: AGC03778190101-003

Date: Jan.18, 2019

Page 2 of 3

Tests Conducted Summary

UV400(In-house test, non-accredited test item)

As requested by the applicant, refer to test procedure of "Resistance to Radiation" in this report, assessment was made against a level of 100% UV protection, in which the spectral transmittance was examined within a range of 280nm-400nm before and after exposure.

Sample Number Wavelength (nm)		Maximum Spectral	Docult	
Sample Number	wavelength (mm)	Left	Right	Result
	280-400	0.1	0.0	Pass

Requirements:

Maximum spectral transmittance shall not exceed 0.5%.

Measurement Uncertainty (if necessary):

Sample description:

1 Orange-yellow lens

Sample Information

Model	Sample Name
MO9034-10	plastic bi-color outer in Black and inner in Orange with orange mirror lens
MO9521-10	Stainless iron gold color with orange mirror lens(orange pouch)
MO8652-10	plastic Transparent frosty white frame and orange leg with orange mirror lens

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-eet.com.

Attestation of Global Compliance Std. & Tech.

Report No.: AGC03778190101-003

Date: Jan.18, 2019

Page 3 of 3

The photo of the sample

AGC03778190101-003 AGC authenticate the photo on original report only *** End of Report***

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cett.com.

Attestation of Global Compliance Std. & Tech.

AGC

No.18 C

Test Report

Report No.: AGC03778190101-001

Date: Jan.18, 2019

Page

Applicant:	MID OCEAN BRANDS B.V
Address:	7/F, Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon, Hong Kong

Report on the submitted samples said to be:

Sample Name	LCO.	See Sample Information
Model	:	See Sample Information
Manufacturers	:	101191
Sample Receiving Date	Alles	Jan.14, 2019
Testing Period	:	Jan.14, 2019 to Jan.18, 2019
Test Method	:	Please refer to next page(s).
Test Result	:	Please refer to next page(s).

Test Requested:

UV400 (In-house test, and test method refer to attached pages for details)

Conclusion: Pass

Approved by Liujinliang, Jay.Liu

Laboratory Supervisor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-celt.com. 18

\GC Attestation of Global Compliance Std. & Tech.

Tel: +86-755 8358 3833 Fax: +86-755 2531 6612 E-mail: agc01@agc-cert.com @ 400 089 2118 Add: Building 2, No.171, Meihua Road, Shangmeilin, Futian District, Shenzhen, Guangdong China

Report No.: AGC03778190101-001

Date: Jan.18, 2019

Page 2 of 3

Tests Conducted Summary

UV400(In-house test, non-accredited test item)

As requested by the applicant, refer to test procedure of "Resistance to Radiation" in this report, assessment was made against a level of 100% UV protection, in which the spectral transmittance was examined within a range of 280nm-400nm before and after exposure.

Sample Number Wavelength (nm)		Maximum Spectra	Result	
Sample Number	wavelength (init)	Left	Right	Kesuit
	280-400	0.0	0.1	Pass

Maximum spectral transmittance shall not exceed 0.5%.

Measurement Uncertainty (if necessary):

Sample description:

1 Silver lens

Sample Information

Model	Sample Name
MO9034-06	plastic bi-color outer in Black and inner in White with silver mirror lens
MO9521-03	Stainless iron black color with silver mirror lens (black pouch)
MO9522-37	plastic royal blue color with silver mirror lens
MO9522-06	plastic white color with silver mirror lens
MO9522-03	plastic black color with silver mirror lens
MO8652-03	plastic Transparent frosty white frame and black leg with silver mirror lens

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-eet.com.

No.18 C

Attestation of Global Compliance Std. & Tech.

Report No.: AGC03778190101-001

Date: Jan.18, 2019

Page 3 of 3

The photo of the sample

AGC03778190101-001 AGC authenticate the photo on original report only End of Report***

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-celt.com. No. 18 C

Attestation of Global Compliance Std. & Tech.

AGC